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Distributed Work Stealing

I Algorithm for dynamic load balancing.
I Increasingly popular in shared and distributed memory.
IWork is divided in items or tasks.
I An idle process steals work from a busy one.

Workstealing Principle

while not finished do
while task ← getWork(myStack) do

task.run()
end while
while myStack is empty do

v ← selectVictim()
steal(v)

end while
end while

Advantages of Work Stealing

I Fully distributed.
IMost of the scheduling overhead occurs on idle processes.
I Provably efficient.

Issues of Work Stealing on Distributed Systems

ITraditionally assumes uniform access times between processes.
I Ignore data transfers costs.
I Load balancing performance degrades at very large scale.

Our Work

I Change the victim selection process to improve average search time.
IUse network topology knowledge.
I Large scale execution on the K Computer.

K Computer

I Each node is composed of one SPARCVIIIfx with 8 cores.
I 80000+ compute nodes, in 800+ racks.
ITofu proprietary network: 6D mesh torus.
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Figure: Coordinate system in a Tofu network: A,B,C inside a Tofu unit, X,Y,Z between them.

A New Victim Selection Process

Most implementations use a random selection
process.
IUniform probability to steal each process.
I Provably efficient for shared memory systems.

Our Idea: use network topology information to
weight the probability of a steal.
I Still a random, efficient selection process.
I Ensures eventual discovery/balancing of work.
I Compensate for response latencies between nodes
at large scale.
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Figure: Example of the probability distribution function of a rank being
stolen by 0, for a deployment on the K Computer over 1024 MPI
processes, 1 per node.

UTS Benchmark Performance
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Figure: 1 MPI process per node.
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Figure: 8 consecutive MPI ranks per node.

Experimental Setup

I Public, pure MPI 2 implementation of UTS.
IUTS input is a tree with 157 billions of nodes.
IDefault parameters for benchmark and platform scheduler.

Additional Measurements: 1 MPI Process Per Node
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Figure: Number of failed steals.
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Figure: Avg search time per process.
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